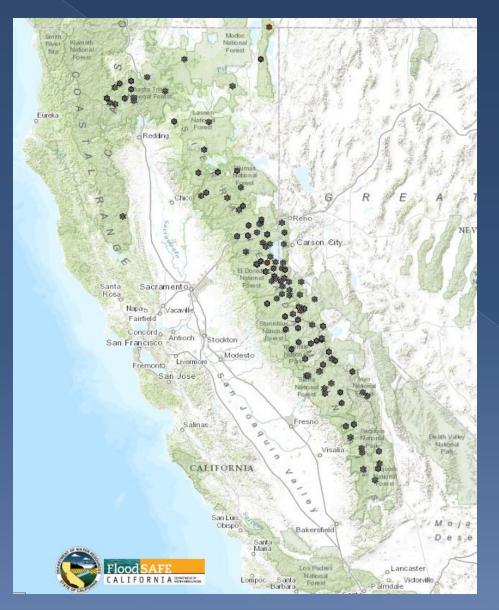
# Snow Surveys Program and Water Supply Forecasting

David Rizzardo, PE Chief, Snow Surveys Section, CA-DWR

January 23, 2015 Central Valley Flood Protection Board

## California Snow Courses and Snow Sensors

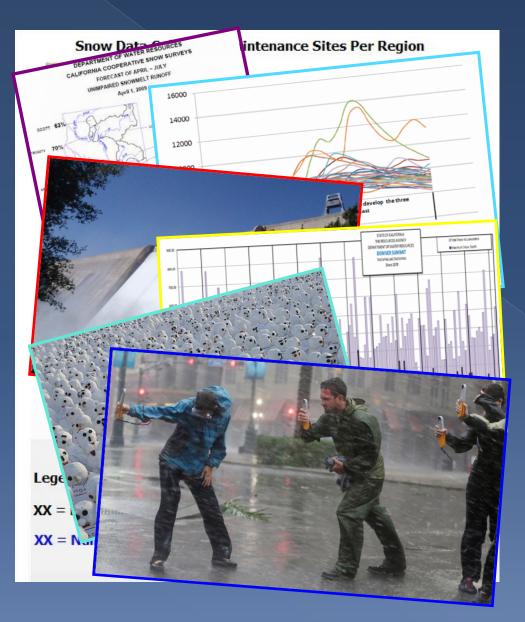
#### Snow Course (oldest climate records)




#### Snow Pillow / Sensor






# Snow Sensor Locations



#### Snow Pack is measured from approximately:

- 250 snow courses (measured monthly February thru May)
- 125 snow sensors (measured daily)

## California Snow Courses and Snow Sensors



#### Snow Data is used for:

- Seasonal Runoff
   Determination (Water
   Supply)
- Snow Melt Runoff
   Forecasts (5-20 day outlook)
- "Early Warning System" for Flood Emergency Response
- Climate/Long term studies
- Recreation
- Giving PhD students something to do

# So How Do We Produce DWR's Water Supply Forecasts?

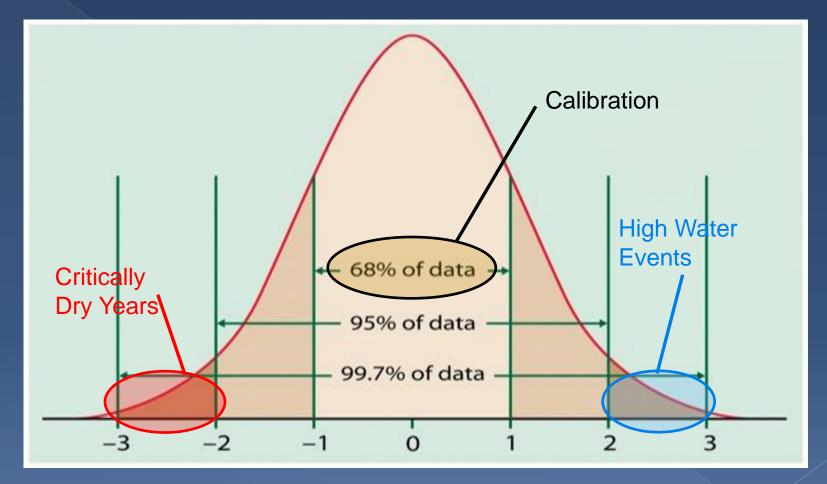
Primary Forecasting Tool

 $\rightarrow$  Multiple Linear Regression Analysis

Dependent Variable

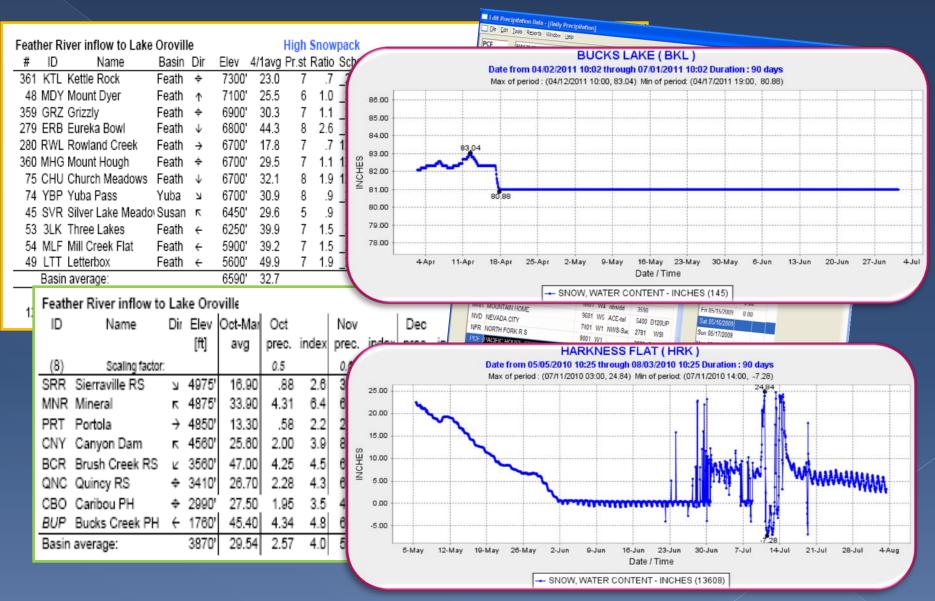
Independent Variables

THREE BASIC TYPES OF DATA 50-year averages → April-July Cumulative Unimpaired Runoff


→ Prior Year April-July Cumulative Unimpaired Runoif
→ October-March Cumulative Unimpaired Runoff
→ Snow Index (High Elevation)

- → Snow Index (Low Elevation)
- October-March Precipitation Index
- April-June Precipitation Index

Ideal forecast accuracy: 5-10%\*


i.e. – We use statistics from a long historical data record!!

## The Statistical Anomaly of Using Statistics: Using Averages to Predict Extremes

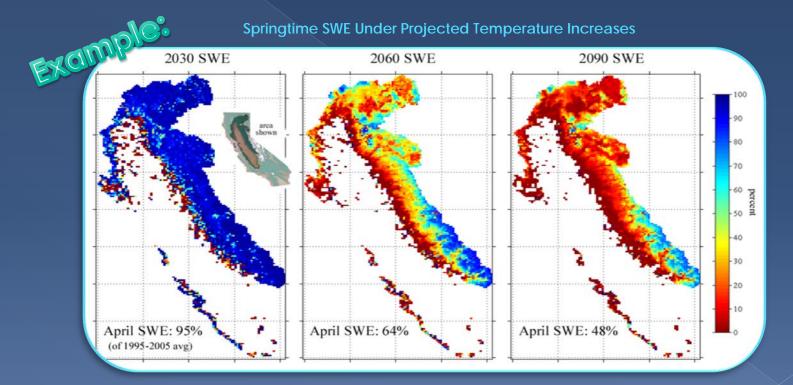


Based on...historical measurements
Errors

## When Data Goes bad...

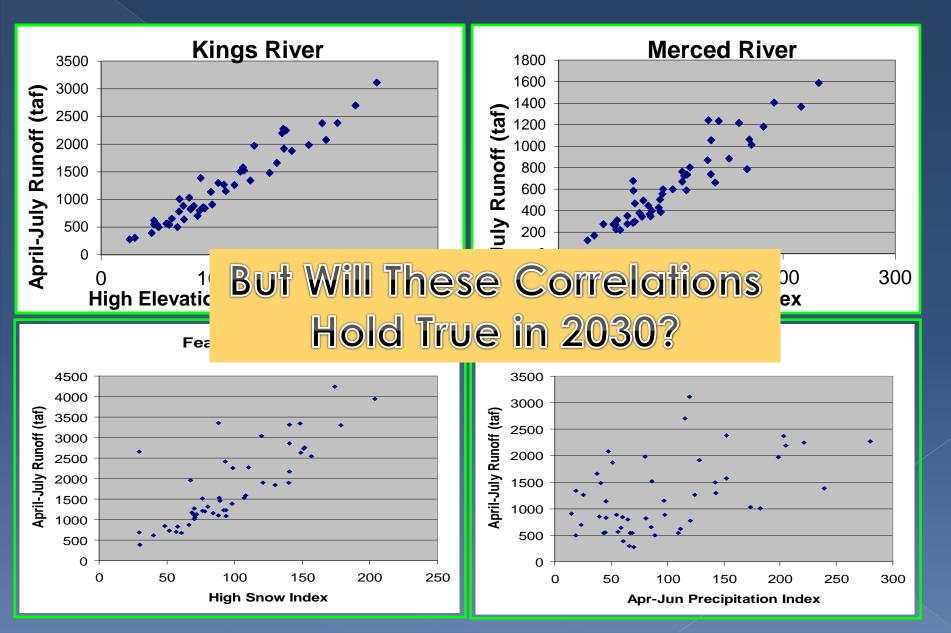





## When Landscapes Change...



# When Climate Changes...

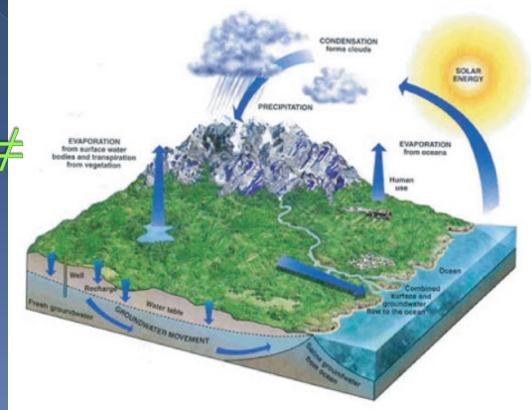

"The Only Constant In Life Is Change" -Heraclitus, c 535 BC

#### Warning! Climate Change Slide!



Source: Knowles and Cayan, 2002 Notes: Projected temperature increases: 0.6C (2020-2039), 1.6C ((2050-2069), and 2.1C (2080-2099), expressed as a percentage of average present conditions

## We Are Only As Good as Our Data



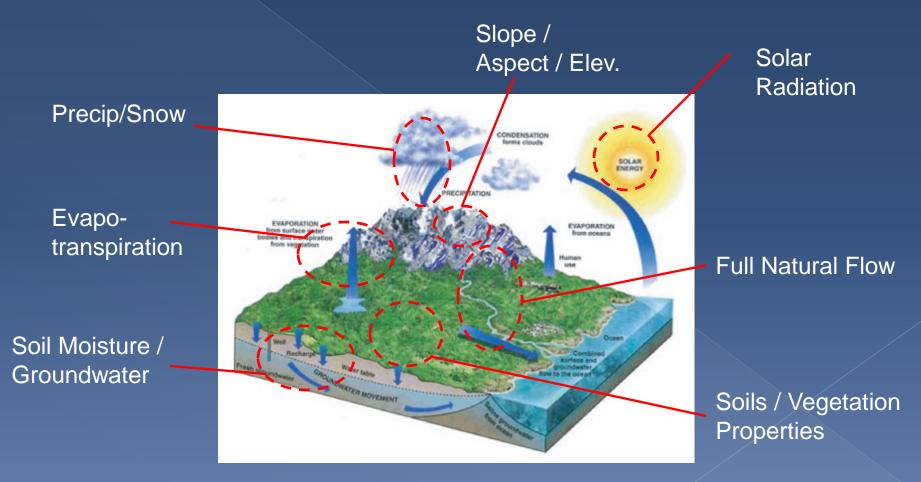

# Good But Not Ideal

Primary Forecasting Tool  $\rightarrow$  Multiple Linear Regression Analysis

#### Independent Variables

- Prior Year April-July Cumulative Unimpaired Runof
- ightarrow October-March Cumulative Unimpaired Runoff
- → Snow Index (High Elevation)
- → Snow Index (Low Elevation)
- → October-March Precipitation Index
- → April-June Precipitation Index




## Modernizing Forecasting

| 2014 April 1 Snowpack Index Computation                          |       |                     |          |             |       |          |         |       | Clear est | timates  | Forecast Date: |          | st Date:  | 4/1/14   |       | 4/1   | date for incre | ment lookup  |          |       |        |
|------------------------------------------------------------------|-------|---------------------|----------|-------------|-------|----------|---------|-------|-----------|----------|----------------|----------|-----------|----------|-------|-------|----------------|--------------|----------|-------|--------|
| Course water content in [inches], valid between Feb 1 and Apr 1. |       |                     |          |             |       |          |         |       |           | Prod     | uction R       | un Date: | 4/1/14    |          | 4     | month |                |              |          |       |        |
| Key                                                              | entry | , estimate, correct | ion/aler | t           |       |          |         |       |           |          |                |          |           |          |       |       | OK for         | dates >Apr 1 |          |       | 0      |
|                                                                  |       |                     |          |             |       |          |         |       |           |          |                |          |           |          |       |       |                |              |          |       |        |
| Ame                                                              | rican | River inflow to Fe  | olsom    |             |       |          | High    | Snov  | vpack     |          |                |          |           |          |       |       |                |              |          |       |        |
| #                                                                | ID    | Name                | Basin    | Dir         | Elev  | 4/1avg   | Pr.st   | Ratio | Sched     | Date     | raw WC         | int Pcp  | adj WC    | % avg    | est % | adj % | rec'd?         | altern.      | note     | Lat   | Yr.Est |
| 106                                                              | UCP   | Upper Carson Pas    | Amer     | Ы           | 8500' | 34.7     | 11      | 1.1   | _2345     | 03/25/14 | 17.5           | +3.2     | 20.7      | 60       |       | 60    | ok             |              |          | 38.70 | 1930   |
| 331                                                              | LCP   | Lower Carson Pas    | Amer     | м           | 8400' | 37.1     |         |       | _2345     | 03/25/14 | 17.0           | +3.5     | 20.5      | 55       |       | 55    | ok             | Blue Lks c/s |          | 38.69 | 1951   |
| 96                                                               | LLL   | Lake Lucille        | Tahoe    | <b>&gt;</b> | 8200' | 59.2     | 11      | 1.9   | 34_       | 03/30/14 | 31.0           | +1.4     | 32.4      | 55       |       | 55    | ok             | Echo Pk s    |          | 38.86 | 1913   |
| 97                                                               | RP1   | Rubicon Peak 1      | Tahoe    | <b>&gt;</b> | 8100' | 49.3     | 11      | 1.6   | 34_       |          |                |          |           |          |       |       | miss           |              |          | 38.99 | 1910   |
| 107                                                              | CAP   | Caples Lake         | Amer     | Ы           | 8000' | 30.7     | 11      | 1.0   | _2345     | 03/25/14 | 11.5           | +2.9     | 14.4      | 47       |       | 47    | ok             | S            |          | 38.71 | 1951   |
| 318                                                              | SQ2   | Squaw Valley 2      | Truck    | 7           | 7700' | 50.8     | 11      |       | _234_     | 03/30/14 | 23.5           | +1.2     | 24.7      | 49       |       | 49    | ok             | SQV s        |          | 39.19 |        |
| 338                                                              | LCR   | Lost Corner Mt      | Amer     | <b>&gt;</b> | 7500' | 34.9     | 11      | 1.1   | _2345     | 04/03/14 | 11.0           | 1        | 10.9      | 31       |       | 31    | ok             |              |          | 39.02 | 1959   |
| 99                                                               | RP2   | Rubicon Peak 2      | Tahoe    | •           | 7500' | 31.0     | 11      | 1.0   | _234_     | 04/02/14 | 16.0           |          | 16.0      | 51       |       | 51    | ok             | S            |          | 39.00 | 1912   |
| 65                                                               | CC5   | Castle Creek 5      | Yuba     | 1           | 7400' | 51.8     |         |       | 12345     | 03/26/14 | 16.5           |          | 20.0      | 39       |       | 39    | ok             | -            |          | 39.35 | 1946   |
| 110                                                              | ABN   | Lake Audrain        | Amer     | м           | 7300' | 35.7     |         | 1.1   | 12345     | 03/28/14 | 12.0           | +2.3     | 14.3      | 40       |       | 40    | ok             | Echo Sum c   |          | 38.82 | 1941   |
| 109                                                              | SIL   | Silver Lake         | Amer     | м           | 7100' | 22.8     | 11      |       | _2345     | 03/27/14 | 5.0            | +1.5     | 6.5       | 28       |       | 28    | ok             | S            |          | 38.68 | 1930   |
| 111                                                              | DRR   | Darrington          | Amer     | Ы           | 7100' | 30.4     | 11      | 1.0   | 12345     | /#N/A    |                |          |           |          |       |       | miss           |              |          | 38.83 |        |
| 101                                                              | WR2   | Ward Creek 2        | Tahoe    | 7           | 7000' | 45.1     |         | 1.4   | _234_     | 04/02/14 | 14.5           | 1        | 14.4      | 32       |       | 32    |                | Ward Cr 3 s  |          | 39.14 | 1913   |
|                                                                  |       | Donner Summit       | Yuba     | 1           | 6900' | 39.8     | 11      | 1.3   | _234_     | 03/27/14 | 4.0            | +2.7     | 6.7       | 17       |       | 17    |                | Snow Lab s   |          | 39.31 | 1910   |
| 320                                                              | LYN   | Lyons Creek         | Amer     | м           | 6700' | 31.9     |         | 1.0   | _234_     | 04/02/14 | 10.5           | 1        | 10.5      | 33       |       | 33    | ok             |              |          | 38.81 | 1937   |
| 115                                                              | HYS   | Huysink             | Amer     | 1           | 6600' | 46.8     |         | 1.5   | _2345     |          |                |          |           |          | 12    | 12    |                | s            |          | 39.28 |        |
|                                                                  |       | i average:          |          |             | 7500' | 39.5     |         |       |           | #N/A     | 14.6           | +1.7     | 16.3      | 41.3     | 39.2  | 39.2  |                |              |          | 38.96 |        |
| 2                                                                | Avera | ge of reporting cou | rses:    |             | 7550' | 38.9     |         |       | Feb 1     | Mar 1    | Apr 1          | F        | uture Inc | crement: | 0.0   |       |                |              |          | 38.94 |        |
| 16                                                               | cours | es                  |          |             | H     | list Med | lian In | crem: | 32        | 10       | 0              |          | Apr       | 1 Index: | 39.2  |       |                |              |          | 39.00 |        |
|                                                                  |       |                     |          |             |       |          |         |       |           |          |                |          |           |          |       |       |                |              |          |       |        |
|                                                                  |       | River inflow to F   |          |             |       |          |         | Snov  |           |          |                |          |           |          |       |       |                |              |          |       |        |
| #                                                                | ID    | Name                | Basin    |             | Elev  | 4/1avg   |         |       |           | Date     |                | int Pcp  |           |          | est % | adj % | rec'd?         | altern.      | note     | Lat   | Yr.Est |
|                                                                  |       |                     | Amer     | Ы           | 7600' | 35.4     |         |       | 12345     | 04/02/14 | 13.5           |          | 13.4      | 38       |       | 38    |                | S            | too higł | 38.81 | 1965   |
|                                                                  |       | Wrights Lake        | Amer     | Ы           | 6900' | 32.4     |         |       | _2345     | 03/31/14 | 11.5           |          | 11.5      | 35       |       | 35    |                |              |          | 38.85 |        |
|                                                                  |       | Phillips            | Amer     | Ы           | 6800' | 28.8     |         |       | _234_     | 04/01/14 | 8.0            |          | 8.0       | 28       |       | 28    |                |              |          | 38.82 |        |
|                                                                  |       |                     | Amer     | Ы           | 6550' | 28.7     |         | 1.1   | _234_     | 04/01/14 | 14.5           |          | 14.4      | 50       |       | 50    |                |              |          | 38.81 | 1939   |
|                                                                  |       | Wabena Meadows      |          | 1           | 6300' | 42.3     |         | 1.3   | _234_     | 03/28/14 | 6.5            |          | 9.2       | 22       |       | 22    |                |              |          | 39.23 | 1937   |
|                                                                  |       | Onion Creek         | Amer     | 1           | 6100' | 22.2     |         | .7    |           | 03/26/14 |                | +1.5     |           | 11       |       | 11    |                |              |          | 39.28 |        |
|                                                                  |       | Cisco               | Yuba     | 1           | 5900' | 26.3     |         | .8    | _234_     | 03/27/14 | 1.5            | +1.7     | 3.2       | 12       |       | 12    | ok             |              |          | 39.30 | 1918   |
|                                                                  |       | Sixmile Valley      | Amer     | Ν           | 5750' | 23.5     |         | .7    |           | #N/A     |                |          |           |          |       |       | -              | Cisco c      |          | 39.32 |        |
|                                                                  |       |                     | Amer     |             | 5750' | 20.7     |         | .6    | _234_     | 03/28/14 | 1.5            | +1.3     | 2.8       | 13       |       | 13    | ok             |              |          | 39.19 |        |
|                                                                  |       | Strawberry          | aband    |             | 5700' | 8.4      |         | .3    |           | #N/A     |                |          |           |          |       |       | -              |              | TMF      | 38.79 | 1942   |
|                                                                  |       |                     | Amer     |             | 5600' | 21.3     |         |       | _2345     | 03/31/14 | 3.0            | 0        | 3.0       | 14       |       | 14    |                | Robbs Sad s  |          | 38.92 |        |
|                                                                  |       | Carpenter Flat      | Amer     |             | 5300' | 18.0     |         | .6    |           | #N/A     |                |          |           |          |       |       | -              | Blue Can s   |          | 39.30 |        |
|                                                                  |       |                     | Yuba     | Ν           | 5200' | 24.4     |         | .8    | _234_     | 03/27/14 |                |          | 3.2       | 13       |       | 13    |                | Blue Can s   |          | 39.32 | 1927   |
|                                                                  |       | i average:          |          |             | 6110' | 25.6     |         |       |           | #N/A     | 6.3            |          | 7.1       | 23.7     | 23.7  | 23.7  |                |              |          | 39.07 |        |
|                                                                  |       | ge of reporting cou | rses:    |             | 6270' | 28.3     |         |       | Feb 1     | Mar 1    | Apr 1          |          | uture Inc |          | 0.0   |       |                |              |          | 39.05 |        |
| 13-1                                                             | cours | es                  |          |             | H     | list Med | lian In | crem: | 17        | -3       | 0              |          | Apr       | 1 Index: | 23.7  |       |                |              |          | 39.00 |        |
|                                                                  |       |                     |          |             |       |          |         |       |           |          |                |          |           |          |       |       |                |              |          |       |        |

#### What a Watershed looks like: Lyell Fork of the Tuolumne River

# Feed Me!

#### "Healthy" Models Need Many Sources of Many Types of Good-Quality, Long-Term Data



Conceptualized Physical Hydrology Mode

Wet Year

Dry Year

- 5% Error on the A-J Inflow To Friant Dam in WY2011 was 112,153 AF (above and beyond our typical 5-10% error) or about 21% of Millerton's capacity.
- 5% Error on the A-J Inflow to Folsom Lake during WY2006 was 131,119 AF or about 13% of Folsom's capacity

• 5% Error on the May 2012 A-J Inflow Forecast (175,000 AF) to Terminus Lake on the Kaweah is equal to 8,750 AF. An overforecast means the A-J would have been less than 172,000 AF which is a Normal/Dry year trigger on the Kaweah River.

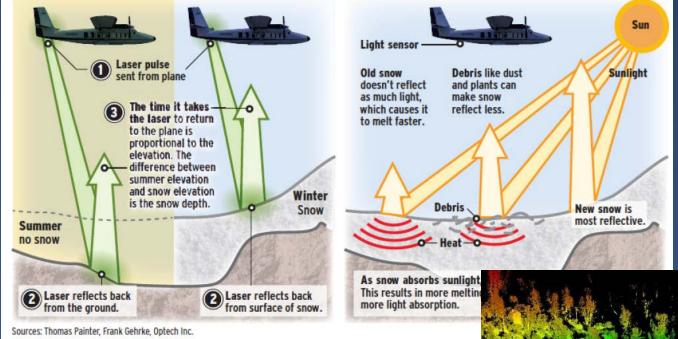
# The Snapshot

- Current forecasting and data network is the backbone of our "early warning system" for Flood ER as well as responding to droughts
- Current Forecasting Methods do not take advantage of state-of-the-art ability to monitor and model physical parameters of watersheds
- Climate Change may limit regression correlations in the future leading to an increase in forecast error
- Advanced modeling capabilities have big appetites for data
- USFS and NPS limiting our access to Wilderness is a threat to remote data collection

## Measuring Snow Into the Future!!

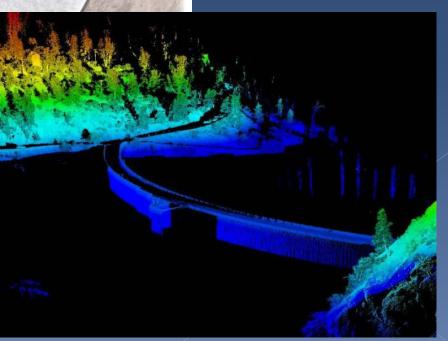
# ۸S

Airborne Snow Observatory Imaging snow water equivalent and predicting runoff for water management


Principal Investigator: Thomas H. Painter, JPL/Caltech Bruce J. McGurk, McGurk Hydrologic, and Frank Gehrke, CA DWR

#### How much snow?

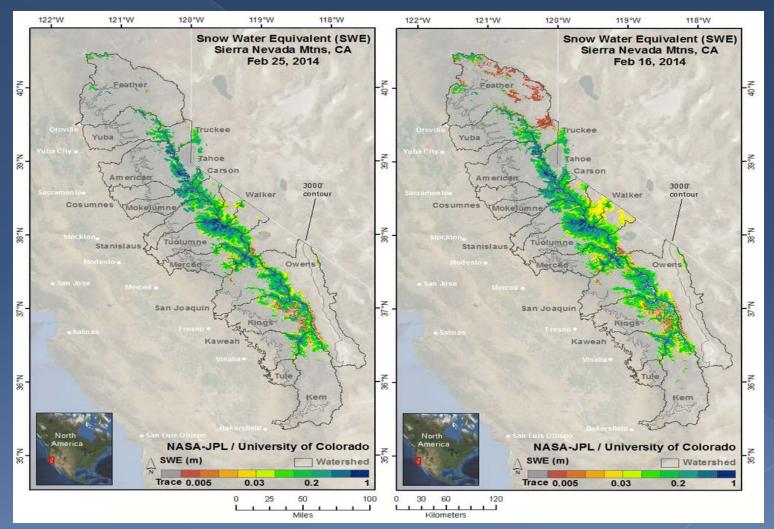
Using laser radar, known as Lidar, researchers measure the depth of snowpack in California.


#### How will it melt?

With an advanced light sensor, scientists measure snow's reflectivity – an indicator of how it will melt.



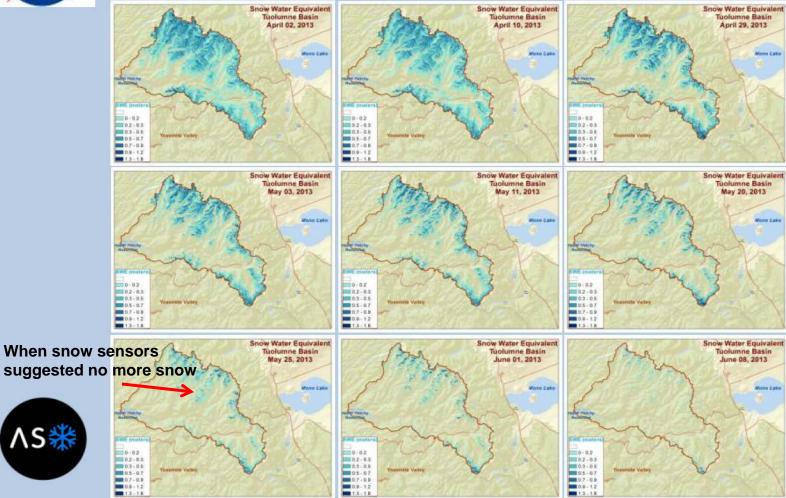
# Using Airplane Based LiDAR


#### Hetch Hetchy Reservoir



# And Satellites!



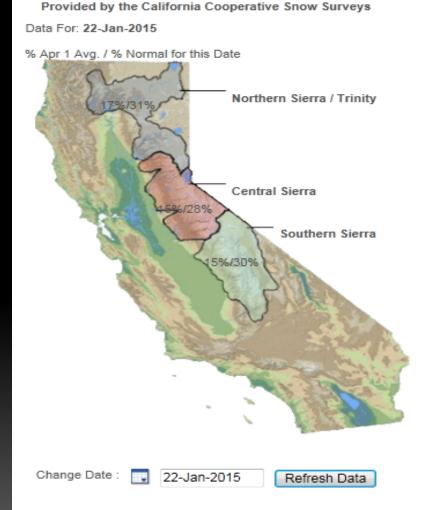





## Measuring Snow Into the Future!!



#### ASO time series of snow water equivalent Tuolumne Basin 2013




# IT ALL STILL COMES BACK TO DATA COLLECTION



## CURRENT SNOW PACK CONDITIONS

Snow Water Equivalents (inches)



#### NORTH

| Data For: 22-Jan-2015           |      |
|---------------------------------|------|
| Number of Stations Reporting    | 31   |
| Average snow water equivalent   | 5.0" |
| Percent of April 1 Average      | 17%  |
| Percent of normal for this date | 31%  |
|                                 |      |

#### CENTRAL

| Data For: 22-Jan-2015           |      |
|---------------------------------|------|
| Number of Stations Reporting    | 43   |
| Average snow water equivalent   | 4.5" |
| Percent of April 1 Average      | 15%  |
| Percent of normal for this date | 28%  |

#### SOUTH

| Data For: 22-Jan-2015           |      |
|---------------------------------|------|
| Number of Stations Reporting    | 29   |
| Average snow water equivalent   | 4.0" |
| Percent of April 1 Average      | 15%  |
| Percent of normal for this date | 30%  |

#### STATEWIDE SUMMARY

| Data For: 22-Jan-2015             |      |
|-----------------------------------|------|
| Number of Stations Reporting 1    | 03   |
| Average snow water equivalent 4   | 1.5" |
| Percent of April 1 Average 1      | 6%   |
| Percent of normal for this date 3 | 80%  |

# **Thank You**



#### **Regional Flood Threats**

North Coast: Mix of Snow fed and semi-arid regions. Wide range of mean annual precipitation, snow pack, and geology. Flooding is driven by heavy precipitation events.



Central/Southern Sierra: Snow melt driven basins. Large variety in size of watersheds. Characterized by high elevations (up to 14000 ft.), upper elevations consist of large areas of exposed granite batholiths. Susceptible to snow melt floods in heavy snow pack years. Limited data above 11000 ft which can account for up to 15% of watershed.



#### Southern Cascades:

Mainly rainfall driven region with peak elevations around 10000 ft (other than Mt. Shasta and Mt. Lassen). Highly influenced by volcanic soils and some rain shadowed areas. Flood threats are driven by heavy precipitation events.

> Northern Sierra: Rainfall driven region. Peak elevations top out at 10000-11000 ft. Heavy rainfall/snowfall events possible. Large area of upper Feather watershed sits in rain shadowed plateau. 1986 and 1997 extreme precipitation storms caused flooding in this area.

#### Eastern

Sierra/Owens River: High elevation, snow melt driven basins. Watersheds are in rain shadow from Sierra Nevada. Rivers drain to terminal sinks in Nevada desert. Gage data is extremely limited. Most susceptible to snow melt flood events.

