American River Common Features And West Sacramento

General Reevaluation Reports

Informational Briefing to the Central Valley Flood Protection Board (CVFPB)

11 July 2014

US Army Corps of Engineers BULDING STRONG®

Presentation Objectives

- Brief study analysis results
- Present features of the Tentatively
 Selected Plan (TSP) for both studies
- Highlight next steps

Study Area Depth of Flooding for the 500 year Event

- Confluence of two major rivers
- High probability of flooding
- High consequences if study area does flood

BUILDING STRONG_®

Levee Problems

Levee Failure Modes from Highest Risk Driver to Least:

- Through and underseepage
- Slope stability
- Erosion
- Overtopping

West Sacramento Tentatively Selected Plan (TSP)

Improve Levees and Southport Setback Levee

- Levee improvements:
 - Seepage/Stability = Slurry cutoff walls or seepage berms
 - Erosion protection = bank protection or rock trench
 - Increase Capacity = Levee Raise
- Setback Levee in Southport to address levee concerns and increase riparian habitat

West Sacramento GRR Southport Setback Levee

Typical Section of Proposed Levee, Offset Area, and Remnant Levee Proposed Levee Station 102+00

West Sacramento GRR Deep Water Ship Channel (DWSC)

- DWSC was constructed in the 1960s and breached the existing project levee
- Since the DWSC West levee provides FRM benefits to West Sacramento the GRR recommends improvements to the DWSC West levee and that it becomes a project levee.

American River Common Features Tentatively Selected Plan

Improve Levees and Widen Sacramento Weir and Bypass

- Seepage/Stability = Slurry cutoff walls, seepage berms
- Erosion protection = bank protection or launchable rock trench
- Overtopping = Levee Raise or Floodwall and widen Sac Bypass

ARCF Tentatively Selected Plan (TSP) Sacramento Weir and Bypass Widening

- Sacramento Weir
 - Widened by 1,500'
 - Old weir kept in place
- Sacramento Bypass
 - New levee constructed 1,500' to the north
 - Existing north levee degraded

American River Erosion Analysis

- Fill = Fill; levees, road embankments, other
- 1850 = 1850s mining deposits
- SS = silty sand, sandy silt, silt, sand
- S = sand; locally silty sand, gravelly sand, clayey sand
- BCG = boulders, cobbles, gravel, with sand; locally with silt and clay
- CS = silty clay, sandy clay, clay; locally clayey sand, silty sand, silt
- C = clay
 - Erosionally resistant surface

Elevation (NAVD 88)

Erosion Analysis

- American River relatively steep downstream from Folsom to the confluence
- Levees constructed close to River between RM 5 and RM 10, constricting flow
- Steepness, constricted channel, along with erodible soils, lead to erosion of the banks and levees

Proposed Erosion Protection Typical Scenarios

Launchable Rock Trench Construction River Mile 7.0 Right Bank (at Guy West Bridge)

Proposed Bank Protection Scenario

Sacramento River Bank Protection Project, Lower American River, River Mile 7 at Guy West Bridge

Implementation Approach

- Worst First for both Studies

 identify areas with
 highest return, greatest buy
 down of risk
- Protect other resources
- Identify ways to minimize impacts and maximize costeffectiveness during Design
- Sponsors moving forward on Section 408 requests to initiate work in highest risk areas

West Sacramento and American River Common Features GRRs Process for Implementation

Questions?

BUILDING STRONG_®